MA 3046 - Matrix Analysis Problem Set 7

1. Normally, we call x an eigenvector of A if Ax = Ax, i.e. the “input” and “output”
are parallel when we multiply A on the right by a (column) vector.

However, it is also possible to define left-hand eigenvectors, i.e.the (column) vector y
is a left-hand eigenvector of A if, for some scalar 7,

vy A =ny’

Show that:
(i) y is a left-hand eigenvector of A if and only if y is also a “normal” (i.e. right-hand)
eigenvector of AT,

solution:

yTA=nyT = TA) =@ny") = ATy=ny

But, by definition, the last condition means precisely that y is an eigenvector
of AT, with n as the associated eigenvalue.

(ii) The eigenvalues of A and AT are identical. (Hint: Use properties of the determinant
on the respective characteristic polynomials.)

solution:

Aly=ny det(AT — nI) =0

But we know, from the properties of determinants, that det (B) = det (BT).

Therefore:

det (AT — yI) = det (AT = n1)") = det ((AT)" = n(@)")
= det (A — nl)
Hence both A and A” have the same characteristic polynomial. But, since the

roots of a polynomial are unique, this means A and A7 must have the same
eigenvalues.
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(iii) What, if any, relationship exists between the eigenvectors of A and those of AT when
all of the eigenvalues are distinct.

solution:

We know that if all the eigenvalues of A are distinct, then A will have a full set
of linearly independent eigenvectors and be diagonalizable, i.e. there will be a
matrix V such that

V'AV=D

where D is a diagonal matrix, and the columns of V are the eigenvectors of A.
But this implies

(V'AV)' =DT = VTAT (v})' =D

(since D is diagonal, it’s trivially symmetric.) But
(v =~
(simply transpose AA~! = A='A =T1). Therefore:

VIAT (v )" =D «— AT (vY) =D '=DWVY)"

Which immediately implies that the columns of (V_l)T are the eigenvectors
of AT. Therefore, y is an eigenvector of AT, if and only if y” is a row of V1,
where the columns of V are the eigenvectors of A.

But V7'V =1, ie. the rows of V™! are orthogonal to every column
of V except the one with the same index. (Specifically, the first row of V—1 is
orthogonal to every column of V but the first, the second row of V—1 is orthog-
onal to every column of V but the second, etc.) Therefore, y(*) is an eigenvector
of AT if and only if y( lies in the orthogonal complement of v(¥), where v(*)
is the eigenvector of A associated with same eigenvalue. So, if needed, y(*
can be found directly from v(¥ by several different methods, e.g. least squares,
Gram-Schmidt, or Q R factorization of V with the column corresponding to v(*
removed.
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2. Consider the matrix

4 -7 -5
A=|-2 3 -1
2 -5 -1
Conduct five iterations of the basic power method, starting with x(© = [1 1 1]F

with normalization (using the infinity norm) after each step, and estimate the dominant
eigenvalue and is associated eigenvector. Compare your answer with the exact (MATLAB)
answer.

solution:
By definition, the basic power method satisfies
(i) x*kD = Ax(*)
(k+1)
i) xBD - X
>
So, starting with
1
x® = |1
1
proceed
4 -7 -5 1 -8
xW=Ax@=1-2 3 —1[]|1[=] 0
2 -5 -1 1 —4
Normalize
1 -8 -1
x<1>—g 0= 0
—4 _%
Repeat
4 -7 =5 -1 —-1.5
x@ =AxM=|-2 3 -1 0l =] 25
2 -5 —-1]|-1 -15
and normalize
1 —1.5 —0.6
x<2>:2—5 25 =1 1.0
1 -1.5 —0.6
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Continuing yields:

—6.4
x®) = | 48
—5.6

and
—4.875

x® = | 5.125
—4.875

(to four decimal places) and finally

—6.0488
x®) = | 5.8537
—5.9512

solution:

, normalize to

, normalize to

, normalize to

~1.000
x® = | 0.750
—0.875

—0.9512
x® = | 1.0000
—0.9512

—1.0000
x®) = | 0.9677
—0.9839

Observe the values of the x(*) appear to be “settling down* (to and eigen-
vector). At this point the approximate eigenvector is the normalized value
of x®) and therfore

4 -7 -5 —1.0000 —5.8548 —1.0000
Av=|-2 3 -1 0.9677 | = 5.8871 | = Av =5.9605 | 0.9677
2 -5 -1 —0.9839 —5.8548 —0.9839

where we obtained the value 5.9605 as the least squares solution of

TA
VA=Av — A= M = v
viv
and so
—1.0000
A1 =5.9605 , and v =| 09677
—0.9839
-1
Note the exact (MATLAB) values are: AM=6, and vV =] 1
-1
(The other two eigenvalues are Ao = 2 and A3 = —2.
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3. Consider the matrix

7 21 -39
A=1|6 28 —42
3 15 -23
Conduct five iterations of the basic power method, starting with x(© = [1 1 1]F

with normalization (using the infinity norm) after each step, and estimate the dominant
eigenvalue and is associated eigenvector. Compare your answer with the exact (MATLAB)
answer.

solution:

By definition, the basic power method satisfies

(i) x*kD = Ax(*)

7 21
x? =AxM =6 28
3 15
and normalize
1
(2) —
S Y oY

(k+1)
i) xBD - X
>
So, starting with
1
x® = |1
1
proceed
7 21
xV =Ax® = | 6 28
3 15
Normalize
1 —11
W= | _g| =
X\ = 8| =
11 _5

(to four displayed MATLAB decimal places.)

-39
—42
—-23

—4.5455
—7.2727
—3.4545

—42

-39 1 —11
1{=1] -8
—23 1 -5
—1.0000
—0.7273
—0.4545
Repeat
—1.0000 —4.5455
—0.7273 | = | —7.2727
—0.4545 —3.4545
—0.6250
= | —1.0000
—0.4750
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solution:

Continuing yields:

—6.8500
—11.8000
—5.9500

x®) = , normalize to

and

—5.3983
—10.3051
—5.1441

x@® = , normalize to

(to four decimal places) and finally

—5.1990
—10.1776
—5.0905

x®) = , normalize to

of x®), and therfore

Observe the values of the x(*) appear to be “settling down* (to and eigen-
vector). At this point the approximate eigenvector is the normalized value

7 21 -39 —0.5108 —5.0695
Av=1]6 28 —42 —1.0000 —10.0582
3 15 -23 —0.5002 —5.0288
—0.5108

= Av = 10.0344 | —1.0000

—0.5002

where we obtained the value 10.0344 as the least squares solution of

—0.5805
—1.0000
—0.5042

<3 —

—0.5238
—1.0000
—0.4992

<@ —

—0.5108
—1.0000
—0.5002

) —

and so

T
VA=AV — A\= v ;}V
V&V
—0.5108
A =10.0344 , and v = | —1.0000
—0.5002
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solution:
1
2
Note the exact (MATLAB) values are: A =10, and v =] -1
1
T2
(The other two eigenvalues are Ao = 4 and \3 = —2.
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4. Consider the matrix

10 -7 —-12
A= 2 1 —12
1 -11 -3
Conduct three iterations of the basic power method, starting with x(®) = [1 1 17, with

normalization (using the infinity norm) after each step, and show that, in this instance,
the method apparently will never converge. Using the exact eigenvalues and associated
eigenvectors of A as computed by MATLAB, explain what went “wrong” here.

solution:

By definition, the basic power method satisfies
(i) x*kD = Ax(*)

(k+1)
) ) X
(5) X = e
So, starting with
1
x0 = |1
1
proceed
10 -7 -—-12 1 -9
xD =Ax® = | 2 1 —12( (1] =1]-9
11 —11 -3 1 -3
Normalize
9 -1
(1) 1 9 1
X =9 | = | -

-3

(to four displayed MATLAB decimal places.) Repeat

10 -7 -—127 (1 1
x® = Ax(D) = 2 1 —12 1] =11
11 —-11 -3|| 1 1

3

and observe that normalization isn’t required here.
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solution:

Continuing yields:

x®) = | —9 , normalize to x®) = | -1

and by now it should be obvious that all future iterates will simply alternate
back and forth between

-1 1

-1 and 1
1

1 1

In other words, in this case, the power method iterates will never converge.
To understand why, observe that, according to MATLAB, the exact eigenvalues
and associated eigenvectors are: Note the exact (MATLAB) values are:

)\1:8, )\2:3 and )\3:—3

and
1 1 2
vl = 2 , vid =1 , and v® =1 2
-1 0 1

(Note we’ve “cleaned” up the eigenvectors provided by MATLAB a bit!) In
this case, if we expand x(?) in terms of the eigenvectors, we find:

1 1 1 2
— 1| =0 2 +as 1] + Qa3 2
1 —1 0 1

= a1 =0, a=-1 and az3=1

In other words, x(9) started out with no component in the direction of v(1).
Therefore, we expect the iteration to produce

x®) = AFxO) = a4 Ev® 4 a3 v = 0y (3)Fv®) + ag(—3)Fv®
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solution:

or equivalently
x(®) = (3)k {OézV(2) + ag(—l)kv(?’)}

In other words, x(*) will continually oscillate between the direction of

a2v(2) + a3V(3) and a2V(2) — a3V(3)
(In a “real” application, the effects of finite-precision errors would likely even-
tually introduce a “small” component in the direction of V(1) and this would
be sufficient, eventually, to cause convergence to the correct eigenvector. In
fact, if we start the MATLAB calculations here with

x(©) = zeros(3,1) + 100 eps rand(3,1)

then we obtain convergence in forty to fifty iterations.)




